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Darmstadt, D-6100 Darmstadt, West Germany 
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Abstract. It is shown that the power expansion of the Gibbs potential of the SK model 
up to second order in the exchange couplings leads to the TAP equation. This result 
remains valid for the general (including a ferromagnetic exchange) SK model. Theorems 
of power expansions and resolvent techniques are employed to solve the convergence 
problem. The convergence condition is presented for the whole temperature range and 
for general distributions of the local magnetisations. 

1. Introduction 

The infinite-ranged Ising spin glass model of Sherrington and Kirkpatrick (1975) 
(referred to hereafter as SK) is expected to give a mean field type description for spin 
glasses. SK originally employed the replication procedure of Edwards and Anderson 
(1975). To obtain physical results at low temperatures a breaking of the replica 
symmetry is necessary (de Almeida and Thouless 1978, Blandin 1978, Bray and 
Moore 1978, Parisi 1979). The ansatz for the symmetry breaking which leads to the 
solution of the SK model, however, is not known. 

Thouless, Anderson and Palmer (1977) (referred to hereafter as TAP) gave an 
alternative approach to the solution of the SK model. These authors presented the 
free energy derived by diagram expansion of the partition function (see in addition 
Sommers (1978) and de Dominicis (1980)). Southern and Young (1977) showed that 
this TAP free energy can also be obtained from the spherical approximation of the 
Ising model. 

TAP have presented the convergence condition of their expansion for temperatures 
near and above the critical temperature. Far below the critical temperature this 
condition is to the best of our knowledge not known and will be presented in this 
paper (§ 3). Our analysis is based on the results of § 2 where we show that the TAP 
equations can alternatively be obtained from the power expansion of the Gibbs 
potential up second order in the exchange couplings. 
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2. The TAP equation as a power expansion 

The highly idealised SK model of a spin glass is described by N king spins (S i  = *l) 
whose interaction is given by 

i # ;  

where the random exchange interactions Jij = A i  are infinitely long ranged (of the order 
N-'"). They are independent, but equally distributed according to gaussian distribu- 
tions 

with means Jo/N and standard deviations of JN-l". 
As we want to give a power expansion, let us introduce 

X(a)=aXint-C hFSi 
1 

(2.2) 

where h;" are external magnetic fields and the parameter a describes the interaction 
strength, The value of a = 1 has to be used at the end of the calculation to obtain 
the results for the actual SK model. 

The Gibbs potential corresponding to the Hamiltonian (2.3) is given by 

p hFmi. -@ma) - -PG(a, p, {mi } )  =In Tr e 
I 

(2.4) 

The independent thermodynamic variables are p = (kT)-' and the local magnetisations 
mi. Note that by standard Legendre transformation techniques hf"  are functions of 
a, p and {mi}, which can in principal be obtained by inverting the relations mi = (Si>,. 
(. . .)a denotes the canonical expectation value with respect to the Hamiltonian (2.3). 

Suppressing the p and {mi} dependence of G, the power expansion is given by 

The derivatives are calculated to 

and 

For the CY = 0 case the expectation values are those of a non-interacting system. As 
all mi are held constant (implying mi = (S i> ,  = we find 

1 
= -2  Jiimimj 

i # ;  

and 

= - i p  J ; ( l -m: ) ( l -mf ) .  
aaz a = O  i # j  
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To obtain equation (2.9) 

was used which results from the thermodynamic relation h? = aG/ami. 

spins. Thus this equation gives together with (2.8) and (2.9) 
In equation (2.5) G(0) represents the Gibbs potential of non-interacting Ising 

2 -- Pff Jijmimj-($) J;(l-m?)(l-m:)+O(a3).  
2 i # j  i # j  

(2.10) 

For a = 1 this is exactly the TAP expression if the higher-order terms O(a3)  can be 
neglected. A term-by-term investigation basically identical (and thus not given here) 
to the treatments of Thouless, Anderson, Lieb and Palmer (unpublished report) and 
Sommers (1978) shows that these higher-order terms can be neglected in the N -* CO 

limit as long as a remains finite. To prove this, one has only to employ xi, 1; - N-'. 
The exact form of the distribution (2.2) is not needed. Thus as a by-product of this 
study we find that the TAP equations remain valid for the full SK model including a 
non-zero mean Jo/N of the distribution p ( J i j ) .  

In concluding this section we want to point out that the term-by-term treatment 
can only be justified in the region in which the power expansion is convergent. The 
convergence criterion of a power expansion, however, is simple and given by la I < p, 
where p is the radius of convergence. This radius p certainly depends on P and on 
all mi. Thus after setting a = 1 the relation 1 < p is the validity condition for the TAP 
equation. 

3. The Convergence condition 

A direct determination of the radius of convergence seems to be difficult. Thus we 
will employ an indirect treatment. According to equation (2.6) the exact relation 

holds where xij(a) = P((SiSi), - mimi) is the susceptibility matrix. Next two standard 
theorems for power series are used. First the expansions of G ( a )  and aG/aa have 
the same radius of convergence. Secondly the distance from the origin (a  = 0) to the 
nearest singular point of the function G(a) is equal to the radius of convergence p 
of the expansion. From equation (3.1) we can conclude that the singularities of G(a)  
are given by the singular eigenvalues of the matrix xij(a) or by the vanishing eigenvalues 
of the inverse matrix xi ' (a) .  Thus the minimum value of la1 for which ,y;'(a)'has 
at least one eigenvalue zero determines the radius p. 

To analyse the eigenvalues of xi' we apply resolvent techniques and introduce 

1 1 N  1 
N z-X- ' -Ni=l  (Z-*-l);l. R (2) = - Tri - - - 
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As the singularities of R ( z )  are given by the eigenvalues of x- ' (a) ,  we have to find 
out the special values of a for which the resolvent R ( z )  is singular at the point z = 0. 
The minimum of the absolute values of all these special a will then give us the radius 
p. To keep our analysis as simple as possible, let us treat the case Jo = 0 first and give 
the generalisation for Jo # 0 afterwards. 

The elements of x-l can be calculated from the relation xi' = a2G/amiami. The 
representation (2.10) of G(a) can be used as long as la1 < p  and we find 

xi' ( a )  =A&) -aJ+ (3.3) 

Aii(a) = ai(a)Sii -2N- 'a2pJ2mimi (3.4) 

Replacing Ji .  by J 2 / N t ,  the matrix Aii is given by 

with 

a i (~~)=[P( l -m: ) ] - '+ (~~pJ~( l -q2 )  

and 
1 

N i  
q r = - I m l .  

(3.5) 

(3.6) 

Note that the off-diagonal term of Aii(a)  is proportional to a projector. Such projector 
terms (even if they are of the order N-')  may in general have an important influence 
on the spectrum (compare e.g. the modification of the semicircle law due to Jo # 0 
(Brody et a1 1981)). This essential point has been overlooked in the treatment of the 
,y spectrum given by Bray and Moore (1979). We further note that equations (3.3) 
and (3.4) contain all relevant terms for the spectrum of x-' in the N + m  limit. No 
further relevant contributions are found from the higher-order terms of equation 
(2.10) (see Appendix). 

Applying a theorem of Pastur (1974) (see also Brody et a1 (1981)) for random 
matrices of type (3.3), the resolvent R ( z )  is determined by the functional equation 

-1  

( N  + CO) 

R ( z ) = R o ( z  - a 2 J 2 R ( z ) )  (3.7) 

where the function R o ( z )  is defined as 

R o ( z )  = N-' Tri(z -A)-' (3.8) 

The off-diagonal part of A i i ( a )  is proportional to a projector. Thus z - A  can be 
inverted: 

We obtain R O ( z )  by summing all diagonal elements, and equation (3.7) yields 

1 1 
N j z - a 2 J 2 R ( ~ ) - - a j  

R ( z )  = - 1 

(3.10) 

f The deviations J f ,  - J 2 / N  are random and of the order N - ' .  This gives corrections to J,, in equation 
(3.3) negligible for N +CO (cf Appendix). 
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As shown by Pastur (1974), this equation for R(z )  always has a unique solution (in 
the class of functions analytic in I for Im z f 0 and such that Im R ( z )  > 0 for Im z < 0). 

For an arbitrary distribution of the mi it is impossible to give this solution explicitly. 
As, however, the second term in equation (3.10) is of lower order in N than the first 
one, we can simplify the problem with the ansatzt 

R ( Z ) = ~ - ~ J - ~ ~ O ( Z ) +  y i ( ~ )  (3.11) 

where yo(z)  is the solution of 

(3.12) 

Equation (3.10) shows that yl(z) is of the order of N-' and is calculated in this order 
to 

2 
mi c 2 

2a2PJ2 1 
y1(z) = 

N N j ( z - y o - a j )  

and the simpler problem remains of solving equation (3.12). 
Again this is impossible for arbitrary distributions of the mi. For our analysis, 

however, we need only the behaviour in the neighbourhood of z = 0. According to 
(3.2) and the definition of xii the relation 

R (0) = -N-' 1 xii = -P  (1 - 4 2 )  (3.14) 

is exact for every N. The solution of equation (3.10) (being exact only in the limit 
N + 00 and under the condition la] < p )  should give the same value of R ( z )  for z = 0. 
Again as long as la/ < p the resolvent R ( z )  is not singular at z = 0. Thus R ( z )  and 
YO(Z) can be expanded at z = 0. Using (3.5) and setting 

(3.15) 

I 

y o b  1 = -((YJ)~P (1 - 4 2 )  f 77 (2 ), 

equation (3.12) takes the form 

(3.16) 

As z - ~ ( z )  is small near z = 0 the denominators can be expanded, yielding in first 
order of [ z  - 77(z)] 

(3.17) 

(3.18) 
where we have set 

ai2  = (PJ)2(1-2qz + 44)  (3.19) 
and where the 4, are given by equation (3.6). 

t This method is analogous to the treatment of Brody et nl (1981) to find the modification of the semicircle 
law resulting from Jo # 0. 
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For a2<ai  equation (3.18) shows that Imv(z )>O for I m z < O  and ~ ( z )  gives 
the leading behaviour of R ( z )  near z = 0. This is, however, not the case for a 2  > a i  
and equation (3.18) represents a wrong branch of r ) (z )  for a2>ai t .  This behaviour 
shows that the values of a = f a o  belong to those we are looking for to find the radius 
of convergence. These singularities correspond to the instability found in the replica 
procedure (de Almeida and Thouless 1978), in the diagram expansion (Sommers 
1978) and in the spectrum of ,y-l (Bray and Moore 1979). 

To finish our analysis for the Jo=O case we have to investigate yl(z) (given by 
(3.13)) near z = 0. As we are only interested in values of a2<ag we can use equation 
(3.18). Expanding the denominators again, we find for z + 0 

(3.20) yt (2) - ~ - l ( a ;  - a' + constant z 1-l 

with 

ay2 = (pJ)22(42 - 44). (3.21) 

Equation (3.20) shows that yl(z) is regular near z = O  for a2#a: ,  but has a pole 
singularity at z = 0 for a = f al.  

From the arguments given above we are now able to conclude that for the Jo = 0 
case the radius of convergence of the power expansion in the limit N + 03 is$ 

P = min{laol, la111 (3.22) 

where a. and a1 are given by equations (3.19) and (3.21). Setting a = 1,  the conver- 
gence condition la I < p  leads us to the region of validity of the TAP equations in the 
Jo = 0 case: 

~ - ~ > m a x { ( l - 2 4 2 + q 4 ) ;  2(q2-q4))- (3.23) 

Condition (3.23) represents the fundamental result of this paper. As pointed out by 
TAP this convergence condition is useful to get a better understanding of the mean 
field approach to the spin glass problem. As a simple example we remark that the 
zero field solution of the TAP equations, m, = 0, must be rejected for temperatures 
kT < J  as condition (3.23) does not hold for these temperatures. Moreover, as another 
simple application an exact lower bound for the spin glass order parameter, 4 2  can be 
obtained (Plefka 1982) from condition (3.23). 

Let us now generalize to the Jo#O case. This case can be obtained from the 
treated one if we replace Ji, by Jli +JON-'. Then the term -aJoN-' has to be added 
to the RHS of equation (3.4). This new term -aJoN-' is similar to the other off -diagonal 
term of A , ( a ) .  Both terms are of order N-' and both terms are proportional to 
projectors. Thus we can use the methods applied before to study R ( z )  near z = 0. 
The behaviour of yo(z)  does not change and the modifications appear in yl(z). For 
special values of a, y l ( z )  again has poles at z = 0. There are in general three values 
of a called a2,  cy3, a4 which are given by the solutions of 

0 = [I - apJo(1- 42)][1- 2a2(/3J)2(q2 -q4)] -2~y~p~JoJ~(qi  - q 3 ) 2  (3.24) 

t For a* - CY: + + 0 the formal correct branch (having, however, no physical significance) can be found by 
expanding (3.16) up to (z - Q)', which is possible as long as Im t # 0. 
$ The theorem of Pastur (proved for real A,i) restricts the given analysis to real a. The singular points in 
the complex CY plane may give smaller values of la/. In this case p <min(laol, lcrll), but condition (3.23) is 
still necessary. Additional investigations (limited up to now to special distributions of the m,), however, 
indicate that (3.23) is also sufficient. 
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and the condition (3.23) for the validity of the TAP equation has to be replaced for 
the Jo f 0 case by 

1 > max(PJ(1- 24, +q4)'"; laz\-'; la3/-'; IaJ') (3.25) 

which is our most general result. In the limiting case J = 0 and Jo > 0 the condition 
(3.25) reduces to 1 >PJo(l -q2) .  This is, as it must be, the well known restriction of 
the mean field theory of an king ferromagnet. 

One may ask if the function G(a) is defined (in the limit N + w )  outside the 
convergence region of the power expansion. We do not believe this and our arguments 
are the following. Consider the set of equations mi = (Si),({hP"}) and vary all fields 
h? from -w to +CO. If there is any phase transition (for N +  CO) then there must be 
a restriction on the values of mi. The inversion of mi = (Si)m is thus not defined for all 
values of mi. As one needs this inversion to define G(a), one has to conclude that 
G ( a )  is in the limit N + CO not defined for all values of mi. 

4. Conclusion 

Summing up, we have shown that the TAP equation of the SK Ising model can be 
obtained by a power expansion of the Gibbs potential. This new derivation is 
transparent and has the advantage that the simple theorems for power expansions 
can be applied to study the convergence problem. For all temperatures the conver- 
gence condition of the TAP equation has been presented. This condition seems to us 
a key to a better understanding of the mean field theory of spin glasses. 

In addition it has been shown that the TAP equations remain valid for the general 
SK model including a ferromagnetic interaction. Finally we emphasise that our treat- 
ment can be applied to other infinite-ranged spin glass models. 
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Appendix 

We will show that higher-order terms of equation (2.10) will not change our basic 
results. 

Let Kii = kisii be a non-random matrix (ki - N o )  and Jii (3 = J'N-') a random 
matrix leading to the semicircle law. Then the resolvent R ( 2 )  of Bii = Kii + Jii can be 
found for N + CO from 

1 1 1 
N N i ~ - k j - J ' R ( z ) '  

R (z) = - Tri[z - K - J2R (z)]- '  = - 1 

Now we consider 0(1/N) 'perturbations' bii to Bib Each bii can contain a non-random 
part b: and a random part bij (with b;= 0). For the resolvent I? of Bii = Bii+b:+b:, 
again the theorem of Pastur holds. 
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As long as b: = 0 (for i # j )  the perturbations are (for finite N )  corrections to the 
ki and the Jjj which, however, are unimportant for N + 00, and in this case R ( z )  + R (2 ) .  

Thus only off-diagonal non-random perturbations may affect R ( z )  for N + 00. 

Next it is shown that there are no such corrections to x-' resulting from the 
higher-order terms of equation (2.10). Denoting the TAP terms by GTAp and ( x ; ' ) ~ ~ ~ ,  
one finds 

G - GTap = C(n1, n2, . . . )qY1qZn2q3n3.. . 
nl ,nz ,  ...= 0 

where the bar denotes the Ai average and where the qr are given by equation (3.6). 
The coefficients C (which are independent of the mi)  certainly satisfy (as long as I Q  I < p )  

lim N-'c=o.  
N + w  

xi '  = a2G/amiami leads for i # j to 

n'n"nl , . .  

where the are linear combinations of the C. Employing (A3), we can conclude that 

and it has been shown that there are no perturbations which can affect our result for 
N+m.  
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